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1.  INTRODUCTION1

Reliable information on household food security is a prerequisite for the accurate and

effective design, monitoring, and evaluation of development projects.  In part due to the

commitment, on the part of many development agencies, to work in marginalized areas, this

information is often either not available or grossly out-of-date.  But collecting data is not a

costless exercise.  This guide discusses how random sampling techniques—methods that use

some mechanism involving chance to determine which farms, households, or individuals are to

be studied—can economize on the costs of gathering information while increasing the likelihood

that it will be both accurate and available in a timely fashion.

The guide has been divided into two parts:  an overview and a series of technical

appendices.  The overview is written in a largely nontechnical fashion and is designed to be

accessible to a wide audience.  It begins with a brief explanation of why random sampling

techniques are a powerful means of obtaining information on household characteristics such as

food security.  It then takes the reader through a step-by-step process of constructing a random

sample.  Having outlined these issues, a worked example is then presented.  The second part

consists of a number of technical appendixes that extend the discussion found in the overview. 

These are designed for individuals with some familiarity with statistics.  The reader interested in

pursuing the issues raised in this guide is encouraged to consult Bernard (1988), Casley and Lury

(1987), Casley and Kumar (1988), Devereux and Hoddinott (1992), and Newbold (1988).  More

technical discussions are found in Kish (1965) and Cochran (1977).

2.  WHY RANDOM SAMPLES?

Random Samples Rather than Censuses

One alternative to a random sample would be to obtain information on all observations, in

a population census or a census of agriculture.  The advantage of a census is that it would seem
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to provide a very accurate "snapshot" of the population at a particular moment in time.  It also

ensures that groups that are numerically small (and hence possibly missed in a survey) are

counted.  Censuses are characterized by three characteristics:  (1) individual enumeration (each

unit of observation, say farm household, is measured separately); (2) universality within a

defined territory or domain (information is obtained on every one in a certain area); and

(3) simultaneity (everyone is interviewed at the same point in time).  The key criteria is (3).  The

census should be conducted within a short and well-defined period of time to reduce omissions

and duplications.  However, there are a number of drawbacks to conducting a census.

First, it is usually much more expensive than conducting a survey.  (This is not true, of

course, where the population is very small.)  Second, the processing and cleaning of a census is

enormously time consuming.  Further, a smaller sample allows the researcher to devote extra

effort to ensure the information obtained is accurate, and the gains from having a smaller, more

accurate survey could well outweigh the benefits of having less accurate information on a much

larger group.  Finally, many topics, such as those involving detailed transactions of individuals or

firms require an intensity of interview or observation that cannot be carried out in the context of a

census.  So issues of cost, time, precision, and quantity of data all suggest that a survey is

preferred to a census.  There is a further reason.  Censuses are unnecessary!  We can learn all we

need to know about a given population provided we draw a random sample of that population. 

This is referred to as inference.  We draw a sample of a certain number of observations from a

given population.  We calculate parameters of interest such as means and proportions, which we

infer represent the characteristics of the underlying population.  

Random Versus Nonrandom Sampling

The discussion thus far indicates that it is not necessary to obtain information on all units

of observation.  Is it necessary, however, to choose those households or farms to be studied in a

random, or probabilistic, fashion?  Why not use nonrandom, or nonprobabilistic methods

instead?

Nonprobabilistic methods are those in which the analyst consciously chooses who will be

interviewed.  Examples of these include the following.  One is accidental sampling.  This

involves interviewing respondents as they are found, for example, walking down a track or road
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and interviewing whoever you happen to meet.  A second is quota sampling.  Here, enumerators

are instructed to contact a specified numbers of observations possessing certain characteristics

(e.g., 15 farms with no livestock; 10 farms with 1-3 head; 5 farms with more than 3 head of

cattle).  These quotas are assigned on the basis of what is known about the underlying

population.  However, the actual selection of observations is left up to the enumerator.  A third

method is purposive sampling.  Here, individual units of study are chosen on the basis of some

judgmental criteria.  Suppose we wish to learn about long-term processes of environmental

change in a rural area.  To obtain this information, we could choose a sample of "wise old men." 

A fourth method is referred to as networking.  Here, you find one person to interview and ask

them to name others who are also suitable candidates, given the topic of interest.  If the

population is small, this can be a useful means of building up a sample.  However, in larger

populations every person or unit of observation does not have an equal chance of being

sampled—that is, the sample selected is not representative of the underlying population. 

However, networked samples are very useful when exploring networks (you want to find people

who know each other) or when dealing with hard-to-find groups.

Under a number of circumstance, nonprobabilistic sampling methods are appropriate.  For

example, if the population is homogeneous ("describe one unit of observation and you describe

them all"), these methods produce information identical to that derived from probabilistic

techniques.  They are also appropriate if there is no intention to extrapolate the results to the

larger population (for example, where the objective is to describe a village in general terms rather

than obtain a statistically representative picture).  Finally, such methods are useful where a

sampling frame is unavailable or too costly to obtain.  

But there are also significant drawbacks to these methods.  Statements made on the basis

of observations found in these ways must be limited to the sample itself—it is not possible to

make legitimate inferences about the wider population.  Further, standard statistical

techniques—such as comparing means of two groups—cannot be used either.  For these reasons,

the use of nonprobabilistic methods by development practitioners is strongly discouraged.  They

should only be used where probabilistic methods are infeasible.

3.  STEPS IN CONSTRUCTING A RANDOM SAMPLE
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There are five steps involved in constructing a random sample:  (1) determining the sample

unit, (2) determining the "universe," (3) constructing a sampling frame, (4) deciding on the

sample size, and (5) choosing the sample.  Although these are discussed sequentially, it should be

noted that it is often necessary to iterate back and forth among these.  So, for example, practical

considerations associated with choosing a sample may have an impact on the manner in which

the sample frame is constructed and the calculation of the sample size.

Determining the Sampling Unit

The appropriate sampling unit—or unit of observation—is guided largely by the objectives

of the survey and the project.  For example, where a project seeks to increase farm yields, the

relevant sampling unit for evaluation purposes would be the farm household.  If the objective

was to improve the nutritional status of children under five, the relevant unit of observation

would be children in that age bracket.  What is important here is that the definition of the

sampling unit should be unambiguous and conform to local understanding and acceptance.  The

most common ultimate sampling unit in multipurpose socioeconomic studies is the household,

even if individual-specific estimates are sought.  In some countries, there may be a generally

accepted definition of what constitutes a household—for example, the definition adopted by the

Central Statistical Office.  Even where such a definition exists, it should be validated locally

before proceeding with the listing exercise.

Determining the Universe

The "universe" is the location or population or group that the study seeks to describe. 

Again, this is likely to be determined by the objectives of the project.  If the project is located in,

say, western Honduras, then western Honduras would be the location of the study.  However, it is

not always practicable to survey the entire location.  The discussion below on "choosing the

sample" and the worked example from Malawi illustrate solutions that are available when this

problem arises.

Constructing a Sample Frame

The use of probabilistic methods to select a sample requires a sample frame:
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The frame for a sample is a list of the units in the population (or universe)

from which the units that will be enumerated in the sample area are

selected.  It may be an actual list, a set of index cards, a map, or data stored

in a computer.  The frame is a set of physical materials (census statistics,

maps, lists, directories, records) that enables us to take hold of the universe

piece by piece (Casley and Lury 1987, 52).

Examples of lists that can be used as sample frames include lists of administrative areas,

census materials, ordinance survey maps, tax listings, land registries, and lists of project

beneficiaries.  In practice, there are a number of dangers when working with such materials. 

Take, for example, a list of households.  First, the frame may be inaccurate.  This could result

from errors in recording information—names might have been misspelled, adults were listed as

children, households contain more people than is recorded, and so on.  Alternatively, these might

have occurred because the information was collected from neighbors as household members were

absent or unavailable when the frame was created.  Second, the frame might be incomplete. 

Households or groups of households may have been omitted  This might have occurred because

the frame is out-of-date (for example, households have subdivided or migrated in or out) or

because of poor enumeration when the frame was created. There might have been difficulties in

determining the location of boundaries, with the result that certain households were missed. 

Third, there might be duplication.  Some households are included twice, possibly because (1) the

lists were compiled by more than one person; (2) confusion over names; or (3) disputes over land

claims.  Devereux (1992) provides a good example of some of these problems in his description

of surveying households in northern Ghana.

When I first arrived in my chosen village of Pusiga I introduced myself to

the sub-chiefs in the two sections, Terago and Tesnatinga (or Teshie), in

which I planned to work.  These sub-chiefs had recently compiled lists of

households for their sections, which were used by the District

Administration to distribute small quantities of government food aid

(following the two successive poor harvests mentioned above).  Had these
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lists been compiled for an unpopular purpose such as tax collection, I

would have had reservations about their accuracy.  But since everybody

had an incentive to register for food aid, I decided to use the sub-chiefs'

lists as a basis for household enumeration.

Nonetheless, these lists were inaccurate in several respects. . . Over-

reporting occurred mainly in large, complex compounds, and typically took

the form of young men claiming to be separate households when they

were, in fact, still farming with their brothers or father.  The explanation

for this was simple.  When the household lists had been drawn up, local

residents were well aware that the purpose was to distribute food aid.

People in large compounds reasoned that if each household was to receive

free food, it was to their advantage to exaggerate the number of separate

households in their compound.  When I made my first round of interviews,

the expectation that I would be bringing some kind of free or subsidised

assistance to the village was high, and over-reporting was standard

practice.  During the year I gradually discovered which compounds had

over-reported household numbers, and simply crossed them off my list.

(A clear indicator was when I asked several 'household heads' in a

compound about planting, harvests, and asset ownership, and received

identical or near-identical figures—since they were each listing, in fact, the

same (joint) production and assets.) . . .

Under-reporting of households occurred most commonly with old

women, especially widows.  Although most old widows are looked after

by a son or son-in-law, this is not always the case, and some old women

constitute separate households, either because they insist on retaining their

independence by farming their own land, or because they have been cast

adrift to fend for themselves.  In my sampling frame there were three such

single-person 'households', one in the first category and two in the second,

all of which I missed until it was too late to incorporate them in the lists of

households from which my samples were randomly selected.
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The reason why these widows were missed is to be found in the

local conceptualisation of a household, which corresponds broadly to the

Western notion of a 'production-consumption unit'.  A man is said to

constitute a separate household if he is 'farming separately' (from his father

and brothers) and 'feeding himself' (and his wives and children)—that is,

both a production entity and a consumption entity.  The two widows living

on their own were virtually beggars, being too infirm to work and having

no-one to help them with farming.  In fact, they were dependent on

handouts from relatives and neighbours.  So they did not strictly qualify as

households in terms of the local definition because they were neither

'farming separately' nor 'feeding themselves'. 

It follows that survey designers should always plan to have any existing list checked.  In

monitoring and evaluation exercises, the population under study, or at least a domain of it, is

generally composed by the beneficiaries of a certain project or program.  In many instances, the

lists of project beneficiaries is readily available with the project management.  However, even in

these apparently favorable conditions, it is imperative to check these lists for inconsistencies,

omissions, and duplications.  By no means should its accuracy be taken for granted.

Where no such listing of households, or units of observation, is available, or where such

lists are so outdated or inaccurate as to be useless, two possibilities remain.  These are (1) to

create a list; or (2) to derive a sample without a frame.  These are discussed in turn.

Creating a sample frame can be a time consuming and expensive exercise.  For this reason,

there may be practical advantages associated with using multistage sampling (described below)

and/or restricting the "universe" to be studied.  For example, an evaluation of a project might be

limited to certain localities rather than all areas in which a project has operated.  It is important to

note that by adopting such strategies, probabilistic samples are representative of a restricted

universe and as such any extrapolation of the results should be confined to it.  

One approach is to start with a list, even one that is known to be inaccurate.  For example,

in northern Mali, survey work began with lists of households that had been compiled several

years previously for the distribution of food aid.  The survey team, accompanied by village
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leaders, walked through the villages matching names on the list to households, adding new

names, and deleting those no longer resident in the village.

Where even rudimentary lists are unavailable, maps can be used as a starting point.  A first

step in area sampling may involve the use of a map providing a graphical representation of the

universe, e.g., a region or a province.  Using easily identifiable natural boundaries, the map can

then be partitioned into approximately equal sized segments.  Once all the segments/villages

have been delimited and some chosen, sketch maps can be easily produced in a relatively short

time without need of much expertise.  Of course, the amount of time and resources going into

this mapping exercise should be suited to the objective at hand.  In most cases, very rough

sketches describing the main roads and pathways and some landmarks (e.g., a church, a mosque,

a borehole, a river, etc.) clearly delimiting different sub-areas of the segment/village could

suffice.  In most cases, however, the inclusion in the sketch of the individual domiciles, properly

numbered, may be necessary.  As in the case of working with listings, it is important to verify

that no area or sampling unit of the universe have been missed and that no overlapping occurs

between different maps since this would obviously result in unequal probability of selection for

the elements of the chosen population.

But there may be instances where it is simply infeasible to construct a sampling frame.  In

such circumstances, the following two-stage technique—EPI Cluster Survey Design, developed

originally to monitor and evaluate the Expanded Programme on Immunization (EPI)—can be

used.

The original design, used for the monitoring of immunization coverage of children within a

target age (generally 12-23 months) involves the selection of 30 primary sampling units or

clusters (villages or other types of area units), and the subsequent drawing of 7 ultimate units

(children) from each cluster, for a total sample size of 210 children.  The clusters are selected

from a comprehensive list of villages or area units with probability proportional to estimated

cluster size (see Appendix 4).  Census information and administrative records may be used to

generate the list containing the estimated size of the cluster.  The second-stage selection of 7

children in each cluster was originally envisioned as a random selection from a list of children in

the target age living within the cluster.  However, difficulties in the enumeration has given origin

to more simplified procedures.  A commonly used variant of the original scheme contemplates
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choosing a random direction from a central point in the village/area unit by spinning a pen or

bottle.  All, and only, the households along this direction up to the edge of the cluster are

enumerated and one chosen at random.  Starting from the chosen households, and along the

direction line, seven adjacent households with children in the target age are selected and

interviewed.

A plethora of variants have loomed in recent years to partly overcome some of the

limitations associated with the standard design.  While choosing seven adjacent households in

the case of restricted target group, i.e., children between 12-23 months, may actually result in a

quite spread out sample within the cluster, in another circumstance in which eligibility criteria

are not so stringent, the selection is likely to identify a highly concentrated conglomerate of

households.  Under the plausible assumption that adjacent households exhibit very similar

socioeconomic characteristics, it appears evident why the standard design does not perform well

in multi-indicator socioeconomic surveys.

With the goal of selecting more heterogeneous elements within the cluster, a possible

variant to the standard design would be to select the third, fourth, or fifth households starting

from a central (or randomly chosen) location after a direction is picked.  From this last selected

household, we repeat the procedure and proceed in a random walk fashion until the quota is met. 

Alternatively, the village could be split into smaller areas and from the center of each unit (or any

randomly chosen point), a direction picked and the Nth household meeting the eligibility criteria

interviewed.

Deciding on the Sample Size

Calculating sample sizes is one of the most technically demanding aspects of survey

design.  Although a number of software packages—such as Epi-Info and STATA—automate these

calculations, it is still necessary to understand what information is required in order to run these

routines.  This subsection provides an overview of these issues.  A more thorough, but more

technically demanding discussion is found in Appendix 2.

Abstracting from practical issues such as the time and resources available to undertake a

survey, a decision regarding sample size is strongly linked to the required level of precision in the

variables we seek to measure.  Precision—or sampling error—is described in terms of a margin
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 Please refer to Appendix 2 for a more technical presentation of these factors2

of error and a confidence level.  For example, we might wish to estimate sample maize yields

within three percentage points of the true mean (the mean we would obtain if we measured all

maize yields).  This statement implies that if we were to take 100 samples, we would expect that

the sample means would be within three percentage points of the true mean at least 95 times. 

Three other factors will also play a role.  One is the distribution of the variable of interest.  If

maize yields are identical across all households, then we would only need to sample one

household in order to determine the average level of maize yields.  By contrast, more dispersed

distributions require a larger sample size.   Second, sample sizes are affected by the particular

sampling design chosen.  Multistage designs require larger samples than single stage designs in

order to achieve the same degree of precision.  Third, increasing the number of variables that we

seek to estimate may also affect the sample size needed to attain a certain degree of precision.   2

Finally, we note that the belief that sample size depends on the size of the population and

therefore on the sampling fraction is widely spread but erroneous.  The size of the population

affects only marginally the precision of the estimate.  The precision of the estimate is directly

related to the absolute size of the sample, but much less so to the sampling fraction.  A sample of

100 units drawn from a population of 1,000 (sampling fraction 10 percent) is highly unlikely to

produce more precise estimates than a sample of 200 from a population of 10,000 (sampling

fraction 2 percent). 

Choosing the Sample

Armed with a suitable sample frame that lists our units of study and knowledge regarding

the desired sample size, the last step is to select the sample in a random or probabilistic fashion. 

There are four types of probabilistic methods:  systematic, simple random sampling, stratified,

and multistage.

A relatively straightforward method of selection is systematic sampling, where draws are

made at fixed intervals through the list starting from a random unit.  For example, suppose we

wish to extract the same sample of 10 households from the list of 150 households.  We randomly

select a number between 1 and 15 (150 divided by 10) and, starting from that unit, we select
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every 15  household.  If 5 were the randomly selected number, then our sample will beth

composed of households 5, 20, 35, 50, 65, 80, 95, 110, 125, and 140.

Note that in addition to being a random selection method, this method has another

advantage when the list is ordered on the basis of some feature related to the variable of interest. 

Suppose we wish to estimate crop yield and the list is ordered based on farm size class, then

systematic selection would guarantee that a wider spectrum of farm size classes are represented

in the sample.  Following this systematic method, we can be almost certain that the first sample

element (household 5) belongs to a different class of, say, element 8 (household 110)  or 10

(household 140).  Set against this advantage is a potential danger.  If there is some subtle,

difficult-to-observe ordering of the sample (resulting, for example, in small farms never having

numbers ending in zero or five), the observations drawn will not be a random sampling of the

population.

A second method is systematic random sampling.  A simple illustration of this is the

following.  Write all the farm identification numbers on individual slips of paper and throw these

in a hat.  Shake the hat vigorously.  Pick out the number of farms you want to interview and that

is your sample.  However, in large populations this is a rather tedious operation (and might

require a very large hat!).  An alternative method is to use a table of random numbers.  Appendix

3 explains how these are used.

There is a potential weakness with both systematic and systematic random sampling. 

Suppose we are drawing a sample of 100 farms from a population of 1,000.  We know from the

census that 30 percent of these have more than 10 acres of land, so our sample should contain 30

such farms.  However, this is only true on average!  Though the likelihood is high that our

sample will contain 30 large farms, it is also possible that it contain 20, 25, or 40.  Suppose it

only contains 15 such farms.  If larger farms have better access to formal sector credit than

smaller farms, ceteris paribus, and given that the larger farms have been underrepresented, you

might feel that inferences regarding credit will not be reliable.  One tempting possibility would

be to pick two or three other samples and choose the one you thought was most representative. 

The difficulty with this approach is that the sampling procedure being used—the population is

sampled until you find a sample you like—can no longer be justified and the results are no longer

suitable for the purposes of inference.
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There is a solution to problems such as these:   random stratified sampling.  The first step

is to divide the population into groups or strata.  Here, the division would be between the 300

large farms and the 700 smaller ones.  Using the random number method, select 10 percent of

farms in each category, so the resultant sample contains 30 large farms and 70 small ones.  The

proportions in the sample are identical to those in the underlying population.

Random stratified sampling is an attractive means of obtaining a sample.  However, it is

helpful to note two potential problems.  First, the relevant stratification variables must be known

in advance.  Second, you must know the underlying population proportions of each strata. 

Addressing these problems requires additional information on each unit of observation.  For

example, lists of farms may only contain the name of the household head.  A short survey may be

necessary to obtain information to stratify and this may be too time-consuming or expensive. 

A fourth form of sampling is multistage or cluster sampling.  Whenever the universe from

which we wish to draw the sample is geographically spread out, single-stage procedures such as

SRS or systematic sampling may not be logistically feasible since they are both likely to generate

equally dispersed samples.  The necessity to lower transportation and organizational costs, as

well as reduce nonsampling errors (enumerators working on a large area may be more difficult to

supervise, increasing the likelihood for errors) suggest that a multistage design may be more

appropriate.  In addition, multistage designs can produce substantial savings in terms of time and

financial resources that must be allocated to the listing operations.

A two-stage design would generally call for the selection of geographically-delimited

nonoverlapping primary sampling units (PSU), also known as clusters (examples of clusters are a

region, a district, a village), the selection of a limited number of clusters, and within each cluster,

the random selection of a certain number of ultimate sampling units.  Given that a two-stage

design is chosen, a number of issues arise.  How do we select the clusters from the universe? 

How many clusters do we select?  How many ultimate units do we draw from each cluster?

The way clusters are selected depends primarily on the availability and accuracy of a

complete sample frame.  In the simplest case scenario in which such a list is available and the

clusters are of equal size, we can select a number of them using simple random sampling and,

within each, draw an equal number of ultimate units.  A complication arises when clusters are of
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unequal size.  This is generally the norm.  In this case, the survey planner has several options,

which are described in Appendix 4.

4.  A WORKED EXAMPLE

This example outlines how a random sample of farmers was obtained in order to assess the

impact of two projects directed toward smallholders in Malawi.  As discussed in Technical Guide

#10 (Evaluation Methods for the Promotion of Household Food Security in Rural Development

Projects), it was necessary to survey participants in both projects, as well as households enrolled

in neither ("control households").  The example illustrates practical difficulties encountered in

sampling, the solutions adopted, as well as the time requirements of the different steps.

Selecting the Sampling Unit

Both projects target smallholder farmers.  Consequently, the sampling unit is a smallholder

farm household, classified using a local definition as a rural household with less than 10 hectares

of land.

Selecting the Universe

The next step was to select the area(s) for the data collection.  Based on a classification by

the Ministry of Agriculture, the country of Malawi is divided into three regions (North, Central,

and South), further divided into Extension Planning Areas (EPAs).  Although it would have been

ideal to work in all three regions, time and budgetary constraints made it necessary to restrict the

survey to a single region.  Field visits conducted in the regions (one or two days for each visit,

combined with extensive talks with key informants) revealed significant differences between

these regions.  For this reason, a random selection of one region was not appropriate.  Instead, it

was decided to select an EPA in Central region.  To facilitate the contrast of the two projects and

rule out differences in location-specific features (or having to control for them during data

analysis), it was decided to select an EPA in which both projects were active.  This restricted the

choices to a pool of only two EPAs with very similar characteristics:  one EPA was randomly
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selected.  An implication of this decision was that it was not possible to extrapolate any findings

from this region to the whole country.

Constructing the Sampling Frame and Selecting the Sample

Given that the objective of the study was to compare the two projects against each other,

and against the control group, it was necessary to sample households in both projects as well as

households in neither project.  These three groups constitute separate "domains."  (Technically,

the "universe"—the EPA—was stratified by domain.)  One way of doing so would have been to

enumerate all households in this area and select households from each domain in proportion to

their number in the EPA.  However, given the relatively low coverage of both projects, this

technique would have led to the selection of an insufficient number of observations among the

two beneficiary groups.  Since the main objective of the study was the contrast of these groups

and not the extrapolation of the group or domain estimates to the EPA as a whole, we chose to

select an approximately equal number of observations in each of the three strata, namely the food

security and agriculture development project beneficiary groups, and the control group.

Smallholder farmers belonging to either project are organized into clubs of variable size

between 10 and 30 households.  The club was selected as the primary sample unit.  The lists of

clubs belonging to each project were available with the project management units.  But because

membership in these groups changes radically over relatively short periods of time, these lists

were not considered reliable.  Further investigation (one or two days talking to key informants)

revealed the existence of several such lists.  In some instances, a list would differ from the others

quite substantially.  We spent several days trying to reconcile the different sources in an attempt

to come up with a unique list that reflected actual project membership.

The first step in the verification process was to clearly define membership for each project. 

Given the objective of the stratification (to enhance the group contrast and measure project

impact within each domain), a club was considered a beneficiary of project A if it had been

active within the project for at least two seasons and it had never belonged to project B.  By

active we meant that it had produced and sold tobacco in both seasons and had participated in the

project’s activities.  Based on the definition, some clubs were excluded from the list either

because of dual membership or because they had not produced and sold any tobacco.
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In the case of the food security project, determining membership was slightly easier since it

could be related to access to the credit package being disbursed by the project.  A club was

considered an food security beneficiary if it had received a full or partial credit package in both

of the last two seasons.  The main difficulty with this group was represented by the common

practice for members to use different names in joining the club.  Local key informants—field

assistants and village headman—helped screen “hidden” duplications.

Once we accounted for these sources of omissions and duplications, we ended up with a

list of 14 clubs for the food security project and 71 for the agricultural development project.  The

next step was to enumerate all the members of each club.  These lists were not available.  The

only information readily accessible was the total number of members at the year of club

formation.  Given the dynamic nature of membership, these figures were not considered reliable. 

Therefore, enumeration of the clubs was deemed necessary.  To reduce the amount of time

necessary for this operation, it was decided to select only a limited number of clubs from the

agricultural development list.  To this end, 30 agricultural development clubs were selected,

using a fixed probability of selection. (This two-stage EPSEM design was chosen because the

absence of accurate estimation of the current cluster sizes meant that PPS methods would have

required the use of weights at a later stage.  See Appendix 4 for further explanation.)

Once enumeration for these 30 clubs had been completed, because of the variable size of

the clusters, we drew from each cluster a number of households proportional to the size of the

cluster.  The procedure resulted in a self-weighting sample within the agriculture development

domain.  Due to the already limited numbers of food security clubs eligible for inclusion in the

sample, a full census was considered appropriate for this domain.

The selection of the control group called for a different methodology altogether.  Available

census data were more than 10 years old, and hence suspect.  Alternative administrative records

were not available.  Tight time constraints made complete enumeration of the selected villages

infeasible.  In addition, to reduce transportation costs and to avoid selecting households from

villages where neither project was active, it was decided to select a control household for every

other beneficiary household in the village in which this latter resided.  One complication was that

the exact village of residence of the beneficiary household was not known until the household

was actually visited, so enumeration in advance of selected villages was not possible.  In
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addition, time constraints would not have allowed for it.  For the selection of the control

households, a variant of the EPI cluster design was used.

Once we visited a village in which selected beneficiary households lived, we randomly

selected one nonbeneficiary household for every other beneficiary household in the sample.  As a

way of explanation, we give an example.  Assume that a total of eight beneficiary households

belong to village X.  A total of four nonbeneficiary households were to be drawn from this

village.  The first step was to roughly sketch the village to locate a central point.  From this

central point, a team of enumerators, jointly with a supervisor, chose a random direction by

spinning a pen on a flat surface.  Once a direction was selected, the enumerators were asked to

follow that direction and starting from the 4  dwelling, interview the first household that met theth

eligibility criteria to belong to the group, i.e., they owned less than 10 hectares of land and they

had never belonged to either the food security or the agriculture development project.  If the same

team had been assigned another control household, the supervisor would again spin the pen in

front of this first selected household, choose a new direction and, starting from the 4  dwelling,th

identify the next household to be interviewed along this “random walk.”  If instead, another team

was required to select an additional control household in the same village, the random walk

would start again from the center of the village by randomly choosing a new direction.

One of the potential problems with this variant of this selection design is that it tends to

underrepresent households located in more remote areas from the village center.  To partly

obviate to this problem, bigger villages were often divided into sub-areas and a center chosen in

the sub-area in which the selected beneficiary household fell.  Another potential problem was

that the selection must follow a natural path, restricting the number of options in terms of the

direction an enumerator can take from the central point.  Whenever possible, the enumerators

were instructed to cut through fields and follow as closely as possible the direction chosen.

Calculating the Sample Size

Sample size calculations took into account the degree of precision required, statistical

power, design effects, and estimated nonresponse rates.  (These are fully explained in

Appendix 2.)  A total of 202 households per stratum, for a total sample size of approximately 600

households, was pursued.  The value corresponds to an prevalence of about 0.7, a difference in
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the magnitude of 0.15, a one-tailed statistical significance of 95 percent, a statistical power of 80

percent, and a design effect of 2.  Plugging in the values in equation (3) (found in Appendix 2),

we obtained

 2 @ [(1.64 + 0.84)  @ (0.21 @ 0.1275) / (0.15)  ] = 184 .2      2

Considering a nonresponse rate of 10 percent, we obtain a total of 202 households per stratum.



APPENDIX 1

A GLOSSARY OF SAMPLING TERMS

universe the location or population or group that the analysis seeks to describe

sampling units the unit of observation of the study:  farms, households, individuals, etc.

sampling frame the list of sampling units.  It must contain all units within the universe.

self-weighting samples a sample in which all units have an equal probability of selection

sampling fractions the ratio between the sample size and the population size.  Also called
the selection probability

domain a part of the population for which separate estimates are sought. 
Examples are farms of a certain size, individuals of a particular age
group.

cluster the aggregation of sampling units, often based on geographic proximity. 
Examples are a village or a section of village.

take the number of sampling units drawn from a selected cluster



Example:  Assume that we wish to estimate the prevalence of chronic malnutrition.  Specifically,
we may wish to get estimates with a margin of error of 5 percentage point, plus or minus, with
a confidence level of 95 percent.  Assuming a prevalence of malnutrition in the universe of 40
percent, then 95 times out of 100, the sample estimate will fall between 35 and 45 percent.  To
compute the required sample size, we would use the value in the third row of the two-sided
confidence interval, 1.96.  If, instead, we only wish to ensure that the estimate will not exceed
the population value by more than 5 percent, then we would pick the one-sided value at 95
percent, 1.64.

APPENDIX 2

CALCULATING SAMPLE SIZES

The Basics

What is the required sample size given a minimum required level of precision of the

estimate?  The level of precision sought can only be achieved within an acceptable margin of

error (an absolute percentage) and with a given level of confidence.  In practice, the confidence

level, as expressed in percentage terms, must be converted into what is termed the normal

deviate, indicating the number of standard deviations defining the confidence interval.  Table 1

reports the most commonly used conversion values from confidence interval to normal deviate. 

Attention should be paid on whether we are interested in a one-sided or a two-sided interval.

Table 1—Normal deviates for confidence intervals

Confidence level (percent) Normal deviate

Two-sided interval One-sided interval K

80 90 1.28

90 95 1.64

95 97.5 1.96

98 99 2.33

99 99.5 2.58
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Example:  For the moment, ignore the design effect and assume a SRS sample (for which the
design effect equals unity).  Imagine we wish to estimate the percentage of infants between the
age of 0 and 12 months with a complete immunization record.  Assume that previous studies in
the area (or similar area) had estimated a prevalence (p) of 30 percent and that we wish to
estimate the value with a margin or error of +- 5 percent with a 95 percent confidence level.  First
we would need to convert the set confidence level into the corresponding value of the normal
deviate.  By looking at the table, the value of the normal deviate for a two-sided interval at 95
percent confidence level equals 1.96.  For an assumed immunization coverage in the universe of
30 percent, then = p(1 - p) = 0.3 * 0.7 = 0.21.  Substituting M = 0.05 (5 percentage points), it
follows that n = 323.

As summarized in the formula below, the practical requirements for the calculation of the

sample size are (1) the variability of variable within the population, (2) the acceptable margin of

error of the estimate, (3) the degree of confidence, and (4) the sample design:

n = d @ K  @ F  / M  , (1)2  2  2

where n is the required sample size, d is the design effect, K is the normal deviate, F is the

estimated variance of the indicator in the population, and M is the allowed margin of error.  d, the

design effect, is defined as the ratio between the variance associated with a multistage design and

the variance, had the sample been drawn using SRS.   (This is explained later in this appendix.)

Table 2 reports the required sample size for some commonly used combinations of the

parameters P and M, assuming a standard 95 percent confidence level and no design effect.

Table 2—Sample sizes, given different prevalences and margins of error
Margin of error (M)

Prevalence (P) 3% 5% 10%

10% 385 138 37

20% 684 246 62

30% 896 323 81

40% 1,024 369 92

50% (upper bound) 1,066 384 96
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For values of P greater than 50 percent, use the value of P that differs from 50 percent by

the same amount.  For example, for P = 70 percent, we would use the values corresponding to

P = 20 percent.  This is valid because of the symmetry property of the normal distribution.

Note that in order to double the precision of the estimate, we must quadruple the sample

size.  It is also obvious that the sample size is more sensitive to changes in the precision

requirements than in the prevalence.  For this reason, if no information is available about the

variability of the variable in the population, the most conservative value of 50 percent (in the

case of a ratio estimate) is generally adopted without major effects on the sample size.

If separate estimates are required for distinct domains, then the total sample size will equal

the sum of the observations required to achieve the targeted precision for the specific variable

within each domain.  For equal size domains, and under the assumption of equal variance of the

indicator in both domains, the sample size should be double the single domain requirements.

Adjusting for Multi-Indicator Surveys

In the vast majority of surveys, we are interested in estimating the values of multiple

indicators.  In these circumstances, it is unlikely that the required level of precision for the

different indicators, as well as their prevalence within the population, will be equal.  The required

sample size will be based on the most demanding estimate.  For example, let us assume that, as

part of the same survey, in addition to immunization coverage, we wish to estimate another

variable, e.g., the level of chronic malnutrition as measured by the percentage of stunted children

between the age of 6 and 60 months, with a margin or error of 3 percent at 95 percent confidence

level.  We also have information that the approximate prevalence in the universe is 40 percent. 

The sample size to meet these requirements will be 1,024.  The required sample size of the multi-

indicator survey will now have to be 1,024 (no longer 323) if we want to guarantee meeting the

precision targets for both variables.

Adjusting for Different Sampling Units

Although many indicators of socioeconomic surveys refer to the individual household

member, the ultimate sampling unit of choice is more often the household.  This has implications

on the computation of the sample size.  Following up on the above example, assume that
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Example:  Continuing with the previous example, in which a sample of 323 units was required
using SRS, let us now assume that we wish to achieve the same level of precision using a two-
stage cluster design and that 7 units per cluster were to be drawn.  Assume that the intra-cluster
correlation for the variable of interest equals 0.2.  Under these assumptions, we are able to
quantify the design effect, which will equal 2.2, implying that a sample of 711 would be needed
to estimate the same variable with an equivalent level of precision, i.e., we would need to select
more than 100 clusters.  

available information suggests that each household in the area under study has, on average, 0.4

infants between the age of 0 and 12 months, and 1.8 children between the age of 6 and 60

months.  Assuming that in each household visited, the enumerators are asked to take the

anthropometric measurements of all children age 6-60 months, then in order to reach the desired

number of 1,024 children, we will only need to visit about 569 households to meet the precision

requirements for this variable (on average, we would collect information on 1.8 children per

household).  Conversely, in order to have information on the immunization records of 323 infants

age 0-12 months, the enumerators may have to interview 808 households (323/0.4).  It this is the

case, the required sample size to guarantee precision of both indicators would now be 808

households (note that the most demanding indicator is reversed with respect to the previous

situation).

Design Effects in Multistage Surveys

A concept used for the assessment of how cluster design affects precision is given by the

design effect (deff), defined as the ratio between the variance associated with the multistage

design, and the variance if the sample had been drawn using SRS.  This can be expressed as

d = 1 + D(m - 1) , (2)

where D is the intraclass correlation and m is average number of responses in the cluster.  For

example, a value of d = 1.5 implies that, to achieve the same level of precision, the sample size

of the two-stage design would need to be 50 percent larger than its SRS counterpart.  Therefore,

if the cost function is such as to allow for an increase in the sample size of more than 50 percent,

a two-stage design is more feasible, since at equal cost we may achieve higher precision of the

estimates.  Note that, for a given intra-cluster correlation, the only way to contain the design

effect is to keep the average "take" low. 
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A practical problem in computing the design effect is the need to quantify intra-cluster

correlation of the responses.  As a rule of thumb, generally a value between 0.1 and 0.3 is

assumed if more detailed information of the intra- and inter-cluster variability is not available. 

For example, assuming a value for the intra-cluster correlation of 0.15 and a take of seven

elements in each cluster, then the design effect would equal 1.9, indicating that to achieve the

same level of precision of SRS, the size of the two-stage sample must be almost double.

Generally, a design effect of 2 is used as a standard.  While appropriate in most instances,

the survey planner must make sure that he is not dealing with special cases in which the

correlation of responses within clusters with respect to the variable of interest is unusually high. 

Examples of that could be location-specific questions that are likely to produce strongly

correlated responses among elements in the same geographically delimited cluster, such as the

use of health facilities, availability of water, etc.., for which the value of intra-cluster correlation

must be set to higher levels, say 0.4 or more.

The final issue relates to the choice of an optimal take.  Earlier we had posed the question

on how many clusters we should select and how many units per cluster, for a given sample size. 

In the multistage case, the sample size is no longer given, since it will depend on the particular

design chosen.  Also, setting up two parameters will suffice, since the third will automatically

follow.  Then, which two parameters do we set up, or better, what is the sequence to be followed

in choosing the parameters?

Since the sample size will now depend on the particular cluster design chosen, as

quantified by the design effect, based on the formula reported above, this effect can be computed

in terms of the size of the cluster.  How do we decide, then, on an optimal take of the cluster,

which, in turn, will determine the required sample size, and the necessary number of clusters? 

Unfortunately, no golden rule exists to decide on an optimal take.  Generally, considerations over

the cost of the different combinations, and the implications on sampling error, will guide the

decision.  However, the difficulties associated with obtaining accurate information on the cost

function gives way to the application of rules of thumb.  One such basic rule of thumb often

suggested for multipurpose socioeconomic surveys is to keep the take within single digits,

whenever possible.  With this in mind, a score of practical considerations will also play a role in

the decision.
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For example, the viability to provide a full daily workload to each enumerator may

influence the choice on the take within each cluster.  Assume that the field team is composed of

three enumerators and that, based on the length of the questionnaire and the spread of the

clusters, we guestimate that about three interviews per day can be conducted by each enumerator. 

A take of 9 would be recommendable in such a situation, since it would avoid keeping some of

the enumerators idle for part of the day or splitting the team in two different clusters during the

same day.

In summary, the choice of a particular cluster design has obvious implications in terms of

lost efficiency.  This loss can be quantified in terms of design effect, which measures the relative

inefficiency of multistage design with respect to a benchmark, SRS.  The losses associated with

cluster design must be weighted against the cost gains due to simplified logistic arrangements,

and will depend on the particular cost function characterizing the survey.  Both theoretical and

practical considerations will enter the decision about the optimal take of the cluster to achieve a

target precision requirement with a multistage design, within budgetary constraints and field

conditions.

Calculating Sample Sizes for Project Monitoring and Evaluation

The monitoring and evaluation of a project generally involves the evaluation of changes

over time or the comparison of two groups.  The indicator to be measured is generally expressed

as a mean, a proportion, or a total value.  For example, one may wish to contrast differences in

yields across project beneficiaries and nonbeneficiaries, or the adoption rate of a certain

technology between these two groups.  Or, alternatively, the goal may be to monitor the changes

over time in the adoption rate of a certain technology since the project onset.  What we ultimately

wish to accomplish in this type of monitoring and evaluation exercises is the assessment, with a

certain degree of confidence, that a change/difference is detected, if it occurred.

The design of a survey for this purposes involves some modifications to the basic

calculations presented above.  Sample size calculations require information on the following

factors:  the number of units in the population; the baseline level of the indicator (if over time) or

the level for control group; the magnitude of the change (if over time) or the difference; the level

of statistical significance, i.e., the degree of confidence in assessing that the change/difference
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observed did not occur by chance; and the level of statistical  power, i.e., the degree of

confidence that the change/difference will be detected if occurred.

For the purpose of project evaluation, the concept of statistical power is perhaps most

important.  Lack of power is likely to lead us to conclude that no difference exists between the

two groups when, in fact, actual changes have occurred but were not detected because of

insufficient sample size.  To that end, the survey planner wants to ensure that a sufficient number

of observations are selected so that some minimum power requirement is met.  A value of 0.8 is

generally adopted as standard, although statistical power in the range of 0.9 should be sought

whenever possible.  The latter would ensure that if a difference exists, it will be detected 90

percent of the time.

Conversely, the concept of statistical significance relates to the level of confidence of

concluding that change has occurred when it has not.  The adopted standard of 95 percent assures

that we would incur in the risk of falsely reporting a change/difference no more than 5 times

every 100 samples.

If the indicator for which we wish to estimate the change is a proportion, the formula to

compute the sample size in each group is given by

n = d [ ( Z  + Z )  @ (P (1 - P ) + P (1 - P )) / (P  - P )  ] , (3)"  $   1   1   2   2   2  1
2            2

where n is the required sample size per group or survey round, d is the design effect, P  and P1  2

are the level of the indicator in each group or period, Z  and Z  are the normal deviate values"  $

corresponding to level of statistical significance  and statistical power, respectively.  As in the

single group case, we need to convert the level of confidence into normal deviates.  For the

statistical significance parameter, the one-sided column of Table 1 can be used.  For statistical

power, the following values can be applied.

Power  (%) 80 90 95 97.5 99.9

0.84 1.28 1.64 1.96 2.32
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For reference, we also report the required sample size for the given combinations of P  and1

the magnitude of change to be detected (P  - P ) for " = 95 percent, $ = 80 percent and d = 2.2  1

P1

Magnitude of change/difference (P  - P )2  1

0.05 0.1 0.15 0.2 0.25 0.3

0.1 1,075 309 152 93 63 45

0.15 1,420 389 185 110 73 52

0.2 1,176 457 213 124 81 56

0.25 1,964 513 235 134 57 60

0.3 2,161 556 251 142 90 62

0.35 2,310 587 262 147 92 62

0.4 2,408 606 268 148 92 62

0.45 2,458 611 268 147 90 60

0.5 2,458 606 262 142 87 56
Source: Sampling Guide, Food Security and Nutrition Monitoring (IMPACT) project.

If the indicator is, instead, a value such as a mean or a total, the formula for the sample size is

n = d [ ( Z  + Z )  @ (F  + F ) / (X  - X )  ] , (4)"  $   1   2   2  1
2  2  2     2

where F is the deviation and X  and X  are the level or mean values of the indicator for these1  2

groups or periods.

Note that this calculation requires knowledge of the variability of the indicator.  The use of

values from previous surveys or from studies in similar contexts is recommended.  If not

available, the values must be guessed.  Consulting an expert statistician with knowledge of the

area and the topic at hand may be appropriate.

Repetition Versus Rotation

Monitoring exercises usually involves the periodic collection of information among the

program participants.  This repetition of the survey operations raises a number of issues that we

briefly address in this section.  First is the issue of whether the same group should be used year
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after year, or replaced, entirely or in part.  The answer will depend on the objective of the study,

as well as a number of other considerations, such as the possibility for contamination or the

respondents level of cooperation.  In general, the use of the same sample over different years may

be more appropriate for the monitoring of project impact, while renewal of the sample each time

may be more suitable when the objective of the study is simply to estimate a certain parameter. 

However, there are exceptions to this basic rule dictated by more practical considerations.  For

example, the perception of an increasing unwillingness by the respondents to participate in the

survey may be a good enough reason to renew, totally or partially, the original sample.  Also, the

increased likelihood for contamination in the responses as time goes by may also prompt a partial

or total replacement of the sample.  

Finally, under the assumption that maintaining the same sample may be preferable in

certain circumstances, when calculating the sample size for a monitoring exercise involving the

repeated collection of data over several years should also take into account the likelihood that

these same households can be interviewed in different survey rounds.  To the problem mentioned

above related to the increased unwillingness by a respondent, we must also account for natural

phenomena such as the likelihood of death, illness, or migration of the respondent, and

household dissolution.  A larger sample size than the precision requirements call for may be

more appropriate in the baseline survey if we wish to ensure the same precision year after year.



APPENDIX 3

USING RANDOM NUMBER TABLES TO OBTAIN A SAMPLE

These are found in most statistics textbooks (the example below is taken from Bernard

(1988), pages 460-461) or can be generated using standard statistical software packages or even,

in some cases, a pocket calculator.

Suppose from our population of 1,000 farms, we require a random sample of 100.  We take

some arbitrary place in the table, say the sixth column, and read off the first three digits.  The

first five numbers are 548, 240, 025, 311, and 366 and so the farms with numbers 548, 240, 025,

311, and 366 would appear in our sample.  We obtain the rest of the sample in the same fashion

(with 000 corresponding to the farm numbered 1,000).  Any number drawn that has already been

obtained is ignored and the process continues until we have 100 different numbers (we do so in

order to ensure that each farm is only included once in the survey).

This example is made easier by the fact that we have exactly 1,000 observations in the

population.  Suppose we had 1,350 farms.  Using the last four digits of the second column, our

first five observations would be 2,533, 4,805, 8,953, 2,529, and 9,970.  None of these numbers

appear in our list of farms!  We could just discard these and continue until we had 100 different

numbers in the range 1-1,350, but this would be both time consuming and tedious.  A more

practical way to proceed would be to imagine the four-digit numbers to be extracted as a

combination of two two-digit numbers—note that of the first two digits, only the numbers 00, 01,

02, ..., 13 are of any use to us.  Suppose we did the following for the first two digits of all

numbers extracted:

Replace 00, 14, 28, ... , 84 by 00

Replace 01, 15, 29, ... , 85 by 01

. . .

. . .

Replace 13, 27, 41, ... , 97 by 13.

Numbers 98 and 99 are still ignored.  The first four entries listed above would become 1,133,

0605, 0553, and 1,129 and we would then go to the next number (4,717, which would become

0517).
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Alternatively, we could do the following:

Replace 1351, 2701, 4051, 5601, 6751, 8101 by 01

Replace 1352, 2702, 4052, 5402, 6752, 8102 by 02

. . .

Replace 2700, 4050, 5400, 6750, 8100, 9450 by 1350.

Numbers between 9451 and 9999 are still ignored.  In this case, the first four entries would

become 1183, 755, 853, 1179, while the last entry, 9970, is still discarded before going onto

selecting a fifth entry.

Table 3—Some random numbers

10097 32533 76520 13586 34673 54876 80959 09117
37542 04805 64894 74296 24805 24037 20636 10402
08422 68953 19645 09303 23209 02560 15953 34764
99019 02529 09376 70715 28311 31165 88676 74397
12807 99970 80157 36147 64032 36653 98951 16877

66065 74717 34072 76850 36697 36170 65813 39885
31060 10805 45571 82406 35303 42614 86799 07439
85269 77602 02051 65692 68665 74818 73053 85247
63573 32135 05325 47048 90553 57548 28468 28709
73796 45753 03529 64778 35808 34282 60935 20344
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Example: Imagine that our universe is composed by three villages of size 20, 30, and 50
households, respectively, and that we wish to draw a sample of 20 households.  To cut on
transportation costs and logistic difficulties, we may wish to limit the data collection to only two
villages.   To select the two villages using PPS, we order the villages and compute the cumulative
size of the universe and the sampling intervals in which each numbered household falls into.

Village Size Cumulative
size

Sampling
Interval

Unit
selected

Cluster
selected

1 20 20 1-20

2 30 50 21-50 37 X

3 50 100 51-100 88 X

  (continued)

APPENDIX 4

SELECTING CLUSTERS WHEN THEY ARE OF UNEQUAL SIZE

When clusters are of unequal size, the survey designer has three options:  probability

proportional to size (PPS), segmentation, and equal probability of selection method.

Probability Proportional to Size (PPS)

If the full sampling frame is at hand, or at least good approximations of the size of each

cluster are available, then we may proceed by selecting the clusters with Probability Proportional

to Size (PPS).  An equal number of units can be then selected from each of the selected clusters

in the second stage.  This procedure will guarantee an equal probability of selection to all units,

thus resulting in a self-weighting sample.  The self-weighting feature of PPS sampling, combined

with the possibility of drawing an equal number of elements from each cluster, makes the design

advantageous from a practical standpoint.  The following example illustrates the procedure.
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Example (continued)

We then randomly select two numbers between 1 and 100, the universe size.  Random selection
can be done by using tables of random numbers, or any other random selection technique.
Suppose that the number 37 and 88 were drawn.  From the last column, we can easily see that the
two numbers selected fall into the 2  and 3  village.  Thus, these two villages are selected.  Thisnd  rd

method of selection is known as PPS, since the probability of a cluster being selected is
proportional to its size (in our example, the probability that the first number drawn falls within
the first village interval is 1/5, the second 3/10, and the third 1/2).  Following this first-stage
selection, we then proceed by randomly drawing 10 households in each of the two selected
clusters.  This design results in a self-weighting sample in which each household has an equal
probability of selection of 1/100 (1/5 x 1/20 in the first cluster, 3/10 x 1/30 in the second, and
1/2 x 1/50 in the third, i.e., the probability of selecting the cluster times the probability to select
a household within each cluster).  Note that the equal probability of selection for all ultimate units
derives from the fact that the difference in the sampling fractions between two clusters in the first
stage of selection (biased in favor of larger clusters) is exactly compensated by the difference in
sampling fractions between elements of the same two clusters in the second stage (biased in favor
of elements in smaller clusters).

Segmentation

If the clusters are of variable but known size, a widely used alternative to PPS is to

segment the clusters in equally-sized groups, and select with fixed probability a limited number

of segments.  Also, segmentation can be used to further reduce listing costs, by restricting the

listing operations to only a portion of the original cluster.  However, the segmentation procedure

bears its own costs, which must be set off against the potential benefits.  Sketch maps of the

cluster, which include the location of the households as well as natural boundaries and easily

visible landmarks, must be drafted before proceeding with the segmentation.  It is often

suggested that the size of the segments are determined on the basis of the chosen take.  In the

above example, we could have divided each cluster into segments of size 10, then select two

segments for complete enumeration.

Segmentation becomes more complicated as segments get smaller, since they will be less

likely to match natural boundaries, if based on area mapping.  In addition, the smaller the area

comprising the segment, the higher the sampling error, since adjacent units are more likely to

exhibit characteristics that are correlated.
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Example: Using the previous example, assume two villages are drawn using SRS.  If the selected
villages are the 2  and the 3 , then, using SRS or systematic sampling, we would drawnd   rd

8 (= 30/80 x 20) and 13 (= 50/80 x 20) units from each cluster, respectively, i.e., a number
proportional to the size of the cluster.  

Equal Probability of Selection Method (EPSEM)

If a frame is not obtainable, or if information on the size of the clusters is not available or

not considered reliable, the use of a multistage equal probability of selection method (EPSEM)

may be more feasible than the two methods presented above.  The procedure consists of

randomly selecting a restricted number of clusters irrespective of their size.  A limited

enumeration of the selected groups must take place to allow the draw of a number of ultimate

units in each cluster proportional to its size.  

The main advantage of this method over PPS when the cluster size is unknown is that it

eliminates the need for weighting the observations in the different clusters, while still

maintaining the cost-saving and limited enumeration of the two-stage design.  The main

drawback of EPSEM is that the number of ultimate units selected out of each cluster is different. 

In most circumstances, it is likely to represent a considerable logistic burden.  In addition, it may

not be very cost-effective, particularly if some of the cluster takes—the number of households or

units of observation within the cluster—are particularly small.

A less viable alternative to any of these multistage designs would have been to select the

20 households directly from the whole universe using SRS.  The obvious drawback of this

method is that it is likely that the 20 households will belong to all three village, increasing the

cost of the survey.  In addition, very few households may happen to be drawn from one or two

villages, making the increase in transportation costs not worth the gain in efficiency associated

with SRS.  The potential improvement in efficiency associated with the single-stage design may

actually have to come at the cost of a reduction in the sample size.  In practice, because

transportation costs have gone up, a lower number of households may be interviewed.  The

existence of this trade-off may ultimately result in a less efficient estimate compared to the two-

stage design.
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